

Cello How-To Guide

Entity Framework Data Access Layer in

CelloSaaS

2

How-To’s – Entity Framework Data Access Layer in CelloSaaS

1 Introduction
The following documentation provides an overview of consuming the Entity Framework with CelloSaaS. This

is not an extensive document that delves deep into the details of Entity framework.

1.1 Pre- requisites

This how-to guide assumes that the developer possesses a prior working experience with entity framework

and is comfortable with the concepts detailed here.

1.2 Entity Framework

The following steps illustrate the process of building a sample application using entity framework. This
sample uses the AdventureWorks database from Microsoft. The only difference with respect to the Entity
Framework is in the Model and Data access layers when compared to building an application using CelloSaaS
with ADO.Net.

I. Model

1. Create the required POCO classes for the product entity as shown below, or in case of using any
existing POCO classes, the classes should derive from the BaseEntity and then provide the
EntityIdentifier, EntityDescriptor attributes.

2. Generate the .edmx file for the product entity using the wizard in Visual Studio.
3. Set the namespace in the wizard to be same as that of the POCO class namespace.
4. Set the code generation strategy to “None” as shown below,

http://msdn.microsoft.com/en-IN/library/bb399567.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb399247(v=vs.100).aspx

3

How-To’s – Entity Framework Data Access Layer in CelloSaaS

5. Now, create the context and entities for the EDMX separately by right clicking on the EDMX canvas
and then choosing “Add A Code Generation Item”. The purpose for doing this is to ensure that the
changes if any in the database do not directly affect the above POCO classes.

6. Now, derive the Entities from the “CelloEntityObject” as shown below,

7. Also, the POCO classes defined above will be representing the business objects and not the database
column names as such.

8. POCO can also be directly used instead of entity object if you use POCO generation with EF. In this

case business object and data object need not be different and you can use POCO objects directly.

9. Also, the LazyLoading and ProxyCreation should be disabled to facilitate the use in web services
[WCF]

10. In the model's application configuration file, the connection string will be generated by the wizard;
this connection string name should be made available to the WebApp in the sql.config file. Hence,
this can be copied and used in the WebApp sql.config file.

4

How-To’s – Entity Framework Data Access Layer in CelloSaaS

11. Create an appropriate search condition that derives from the SearchCondition class from
CelloSaaS.Model assembly and CelloSaaS.Model Namespace.

12. Also, create the necessary exception in this case, the ProductException that derives from the
CelloSaaS.Library.Exceptions.BaseException from CelloSaaS.Library assembly and
CelloSaaS.Library.Exceptions namespace.

5

How-To’s – Entity Framework Data Access Layer in CelloSaaS

Note:

Microsoft standard for defining custom exception is given here.

II. DAL

1. The process of creating the DAL is similar to that of ADO.Net; the interfaces should implement
IEntityDAL<T>, where T will be any BaseEntity. In this case, the DAL interface will be IProductDAL

III SqlDAL

1. Create a SqlDAL class that derives from EntityDAL<T> and implements the IProductDAL. In this case it
will be ProductDAL

2. Create a reference to System.Data.Entity dll for this project

http://msdn.microsoft.com/en-IN/library/ms182151(v=vs.80).aspx

6

How-To’s – Entity Framework Data Access Layer in CelloSaaS

3. Now, create a private method or a property that can return the Entity Connection based on the
tenant identification at run time. The following figure illustrates the implementation

4. To begin with the CRUD implementations for the Product DAL create a context object and perform
the CRUD operations like adding a new object, updating an existing object and deleting the object.

5. Also, ensure that there are suitable conversions being made from the database object to the
business object and vice-versa.

6. The following sample shows one such operation being done

Create method implementation

7. For the autogenerated entity identifier's use Guid.NewGuid() as Entity framework 4.1 does not
support default database generated id propagation in the conceptual layer.

7

How-To’s – Entity Framework Data Access Layer in CelloSaaS

Update method implementation

Fetch method implementation

8

How-To’s – Entity Framework Data Access Layer in CelloSaaS

Search method implementation

8. In this implementation, use the include method to include the necessary related entities

Delete method implementation

9

How-To’s – Entity Framework Data Access Layer in CelloSaaS

9. Similarly for all the entities that derive from the BaseEntity, the Identifier property should be filled in
before passing the entity to the caller. This has to be followed for the Fetch, Search, Insert methods.

10

How-To’s – Entity Framework Data Access Layer in CelloSaaS

1 Contact Information
Any problem using this guide (or) using Cello Framework. Please feel free to contact us, we will be happy to

assist you in getting started with Cello.

Email: support@techcello.com

Phone: +1(609)503-7163

Skype: techcello

mailto:support@techcello.com

